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Abstract— Microassembly represents a very promising solu-
tion to microproducts and complex Micro-Electro-Mechanical
Systems (MEMS) fabrication. Since, in the case of teleoperated
assembly, an operator is the main source of errors, there
is a great interest in microassembly automation. Its main
issue consists in precise estimation of object position. Previous
studies demonstrate the possibility of application of model-
based visual tracking algorithms from ViSP (Visual Servoing
Platform) library. However, the methods of macroassembly
cannot be directly applied when working with microobjects.
The characterization of single-view visual tracking notably
revealed the complexity of depth estimation in microscale,
which is due to small depth variation in the seen images
compared with the distance from camera. So, an algorithm
of Z coordinate reconstruction using a second camera was
developed and analyzed for visual servoing task. It was then
used to automate microassembly. Experiments demonstrate the
possibility of complex microcomponent automatic microassem-
bly with precision better than 10 micrometers.

I. INTRODUCTION

Over the past two decades the tendency for objects
miniaturization demonstrates a scientific interest toward com-
plex and high precision MEMS [1]–[3]. These systems
find their application in a great number of scientific fields
such as biomedical engineering, aerospace manufacturing
and instrumentation. The main stumbling block to MEMS
development is the complexity of microfabrication process.
Microassembly using microrobotic systems represents one of
the alternative solutions to this problem.

Several works already established the viability of this
approach and notably shown that the key feature relies in the
capability of the system to achieve modular and highly accu-
rate assembling, i.e., typically smaller than 5 µm (maximum
acceptable error) [4]. In the presented work, a microoptical
system displayed in Fig. 1 is used as a case of study. It
represents an example of MEMS where the high assembly
precision is crucial. Several concepts of microoptical benches
to be assembled have also been proposed [5]–[7]. In [8], it
is also established that a positioning accuracy smaller than
1 µm can be achieved in teleoperated mode. The operator
being the main source of inaccuracies [8], there is a great
interest in automating the microassembly process. It implies
an increase of the throughput yield but also quantification of
the main sources of inaccuracies which is of great interest
for the design of MOEMS (Micro-Opto-Electro-Mechanical
Systems) blocks and microrobots, the clean room fabrication
and assembly strategies.
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Fig. 1: Example of assembled microoptical bench (a) and its
CAD-model (b).

Previous works on the field of automatic microassembly
demonstrate the possibility of model-based visual trackers
application [9]. However, these strategies cannot be em-
ployed directly in our case, because of several constraints.
First, all objects of the scene are made of silicon which
causes reflections. Secondly, the object contains very small
flexible parts (10×50 µm2 of cross section) which come into
contact with microgripper for object manipulation. Finally,
the ratio between length and thickness is very high. The
preliminary work on the characterization of single-view
visual tracking techniques was conducted [10]. The obtained
results prove that it is possible to have a precision better
than 1 µm for X and Y coordinates in camera frame.
However, the depth coordinate cannot be correctly estimated
in microscale due to the fact that the focal distance is much
bigger than sensor size, which results in the situation where
projective rays become parallel. One of the possible solutions
consists in installation of the second camera in the plane
perpendicular to the Z axis of the first camera, which will
allow to reconstruct the missing information about the depth
coordinate. Therefore, the main goal of this paper consists
in estimation of object position in stereo setup and applying
stereovision-based control to automate the assembly process.

A first step consists in precise estimation of 3D object
position (XYZ) using stereo visual feedback to achieve au-
tomated assemblies of MOEMS and then study the viability
and precision of this approach at the microscale. To achieve
this goal, a strategy based on high level closed-loop vision
control will be implemented. The studied methods are model-
based visual tracking algorithms from the ViSP library [11],
which is able to directly provide the 3D object pose using a
single view of the scene.



25 mm

Microgripper

Θ

X

Y

Z

X

Y

Zw

w

w

Fig. 2: 4-DOF robot with microgripper.
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Fig. 3: Cameras positions in stereo setup.

The remainder of this paper is organized as follows:
Section II presents the equipment used, micromanipulation
station in particular, and reminds the results of single-view
tracking characterization. In Section III, we present the
approach of the depth coordinate reconstruction, that will be
used further in Section IV, which describes visual servoing
control law and analyses its results. Section V represents an
experimental validation of our work: assembly automation
and its brief analysis. Finally, conclusions and prospects are
discussed at the end.

II. SINGLE VIEW MODEL-BASED TRACKING

A. Experimental setup

For an accurate control of position and alignment of
optical path, we use the 3D microassembly station that
comprises a serial robot of 4 degrees of freedom (XYZΘ)
with a 4-DOF microgripper (Fig. 2) and a vision system
(Fig. 3). The whole system is placed on an antivibration
table. The characteristics of the robot and vision system are
represented in Tables I and II, respectively.

TABLE I: Characteristics of the stages comprised in the
robot used in a micromanipulation station.

Reference Specifications

Translation stages :
XY M-111-DG Stroke : 15 mm

PI Mercury Backlash : 2 µm
Min. Inc. Motion : 0.05 µm
Unidir. repeatability : 0.1 µm

Z M-121-DG Stroke : 25 mm
PI Mercury Backlash : 2 µm

Min. Inc. Motion : 0.05 µm
Unidir. repeatability : 0.1 µm

Rotation stage :
Θ SR3610S Stroke : 360◦

SmarAct Resolution : < 10µ ◦

TABLE II: Characteristics of the vision system.

Reference Specifications

2x Cameras :
IDS uEye UI-3480CP CMOS Rolling Shutter

Aptina Pixelpitch : 2.2 µm
Pixel Class : 5 Megapixel
Resolution (h x v) : 2560x1920

Objectif CVO Class : high resolution
GM10HR35028 Focal distance : 50 mm

B. Single View Model-Based Tracking Characterization

The performance of the single view model-based vi-
sual tracking in microscale have been previously estimated
in [10]. The latter concentrates on the estimation of noises
influencing the tracking by conducting two types of experi-
ments:
• Tracker analysis with a static object (the object pose is

recorded while the robot is not moving);
• Planned path tracking (comparing the measurements

between proprioceptive robot sensors and the visual
tracker).

The experiments for the analysis with a static object and
planned path following give the results presented in Tables III
and IV. In the case of static object tracking, one can notice
that the standard deviation of position measurement for all
of the trackers along X and Y axes of the camera does not
exceed 1 µm which is a very promising result in terms of its
further application for the assembly tasks. For the planned
path tracking, the standard deviations of errors between
the tracker and the robot joint coordinates attain 2.8 µm
along X and 4 µm along Y axis. These deviations include
intrinsic robot positioning errors which can typically reach
several micrometers of amplitude and can be compensated
by visual servoing control law since closed-loop control is
used. The depth coordinate cannot be correctly estimated,
which is due to the fact that if the set of points seen in the
image has small depth variation compared with the distance
from the camera, the projection model becomes close to a
parallel one [12]. Thus, it is more difficult to estimate the z



TABLE III: Standard deviation of position measurement for
different trackers with a static object in the camera frame.

Coordinates Edge-based [13] Texture-based [14] Hybrid [15]
X 0.2245 µm 0.7861 µm 0.2551 µm
Y 0.7026 µm 0.8650 µm 0.6207 µm
Z 24.3304 µm 44.1736 µm 14.8640 µm

roll 0.0859◦ 0.1607◦ 0.0610◦
pitch 0.0577◦ 0.1254◦ 0.0539◦
yaw 0.0608◦ 0.0984◦ 0.0461◦

TABLE IV: Standard deviation error obtained between
visual hybrid tracker and robot sensors in camera frame.

Coordinates Standard deviation error
∆x 2.8165 µm
∆y 4.0918 µm
∆z 215.8632 µm

coordinate in camera frame. This problem particularly shows
up in microscale when one use a high magnification vision
system (optical microscope) and demonstrates the necessity
of supplementary sensor usage, i.e., second camera.

III. DEPTH ESTIMATION IN STEREO-VISION SETUP

The use of the second camera gives an additional in-
formation about object position and allows to reconstruct
depth coordinate. The stereo vision system is placed in the
way that Z axis of the first camera should be perpendicular
to Z axis of the second camera. One of the important
steps of depth estimation, in case of two cameras, is the
calibration of the entire system, i.e., the estimation of the
transformation matrices between different elements (robot
sensors, first camera, second camera) in order to be able
to express all data in a common frame. These matrices are
schematically represented on Figure 4

Thereafter, we use the following notations:
• i image number;
• Rc1 ,Rc2 cameras frames;
• Rw world frame;
• c1Po,

c2Po the pose of the object in the camera frame
obtained with the tracker,

cPo =

(
cRo

cto
0 1

)
where cto = (cxo

cyo
czo)>;

• wPo the pose of the object in Rw (variables with
overline are referred to values estimated using propri-
oceptive robot sensors), rotations are not taken into
account,

wPo =

(
I3×3

wto
0 1

)
A. Transformation between Rw and camera frames

In order to be able to reconstruct c1zo, it is necessary
to transform the object coordinates in the world frame wto
(obtained with proprioceptive robot sensors) to the frame
of each cameras, this for each image. Thereafter, in the
cases where calculation is similar for both cameras, the
indexes c1 and c2 are omitted and index c is used instead.

The transformation can be represented by a matrix cMw

which contains the information about frame rotations and
translations

cPo = cMw
wPo (1)

where cMw is the homogeneous matrix, which represents
the extrinsic parameters of the camera, is not known (for
both cameras). In order to estimate cMw, an optimization
algorithm was used. The goal of such optimization consists
in minimization of the distance ∆ between the pose obtained
from the tracker cPo and the sensor values of robot axis cPo

in camera frame along a 3D planned path. So, for each image

∆ =

(
cto
1

)
− cMw

(
wto
1

)
(2)

The optimization criteria is then defined as a sum of
squared distance between two curves as

J =
n∑

i=1

∆T
i C ∆i (3)

In order to minimize the influence of czo coordinate, the
coefficient of 0.001 was applied.

C =

1 0 0
0 1 0
0 0 0.001


The used optimization algorithm is a Levenberg-

Marquardt algorithm that is implemented in the Mathworks
Optimization Toolbox [16]. It was programmed to take the
best fit on 20 optimizations from random initial transforms.
So, using this algorithm for each camera, the matrices c1Mw

and c2Mw can be estimated.

B. Transformation between Rc1 and Rc2

Further calibration of the visual system represents the esti-
mation of the transformation matrix c2Mc1 between cameras
frames. This matrix allows to represent the object position
obtained with the first camera (Rc1 ) in Rc2 . This matrix can
be found using world frame (Rw) as an intermediary stage,
that gives the following equation:

c2Mc1 = c2Mw
wMc1 = c2Mw(c1Mw)−1 (4)

It has to be highlighted, that it is impossible to find the matrix
c2Mc1 directly using the same algorithm as for c1Mw and
c2Mw, because the information about z coordinate is wrong
for the poses obtained with the camera c1 as well as with
the camera c2.

So, knowing c1Mw and c2Mw, one can easily find c2Mc1

matrix.

C. Depth Estimation

The relation between the object coordinates in Rc1 and
Rc2 can be written as follows(

c2to
1

)
= c2Mc1

(
c1to

1

)
(5)
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Fig. 4: Representation of transformation matrices.

More in details
c2x
c2y
c2z
1

 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
0 0 0 1




c1x
c1y
c1z
1

 (6)

In order to eliminate the unknown term (c2z), we use a
matrix of orthographic projection P, so that

P

(
c2to

1

)
= P c2Mc1

(
c1to

1

)
(7)

with

P =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


By decomposing c1to we obtain:

P


c2x
c2y
c2z
1

 = P(c2Mc1)




c1x
c1y
0
1

+


0
0

c1z
0


 (8)

P


c2x
c2y
c2z
1

−P(c2Mc1)


c1x
c1y
0
1


︸ ︷︷ ︸

B

= P(c2Mc1)


0
0

c1z
0


︸ ︷︷ ︸

A (c1z)

(9)

A c1z = B (10)

Thus, we obtain an over-determined system with two
equations and one unknown that can be found using the
pseudo-inverse of the matrix A defined as A+ (which
provides the optimal solution in a least-squares sense):

c1 ẑ = A+ B (11)

So, we obtain two equations with one unknown vari-
able c1 ẑ. Equation (11) is used in real time process that
allows to have enough information on the object position
to achieve microassembly tasks. When c1z is reconstructed,

Fig. 5: Image acquired with the camera c1 with current pose
(red) and desired pose (blue).

the procedure of the Section III-A is repeated once again to
re-estimate the matrix c1Mw.

IV. VISUAL SERVOING

Once the system calibration is done, it is possible to
correctly measure the 3D position of the object. So, as the
next step, the control law is to be developed.

A. Control Law

Among existing types of visual servoing, PBVS (Posi-
tion Based Visual Servoing) was chosen for the following
reasons: first, because using visual tracking techniques we
obtain directly the 3D object position. Its main advantage
consists in the fact that the set point for control loop can be
expressed in Cartesian coordinate system. Secondly, using
PBVS one obtain better robot behavior in Cartesian space
contrary to Image Based Visual Servoing (in image plane).
So, as an input of control loop we use a 3D pose, which
represents the desired position of the object, s∗. Current
object position in every iteration will be noted as s(t). The
both quantities are expressed in Rc1 . A visual servoing
control law consists in minimizing the error between the
current pose s(t) and the desired pose s∗ (Fig. 5):

e(t) = s(t)− s∗ (12)

where

s(t) =


c1xo(t)
c1yo(t)
c1 ẑo(t)

1


The goal now is to find the relation between this error (12)

and robot movement, i.e., to find the desired robot speed for
every axis allowing to minimize e(t) and use it as control
signal. In order to assure system stability in closed-loop, the
following Lyapunov function was defined [17]

V (t) =
1

2
‖e(t)‖2 =

1

2
e>e (13)



TABLE V: Final visual servoing errors for different values
of λ.

Coordinate λ = 0.1 λ = 0.05
∆x -2.21 µm -1.68 µm
∆y -4.11 µm 0.64 µm
∆z 4.66 µm -1.09 µm

The derivative of this function is

V̇ (t) = e>ė (14)

A controller capable to impose ė = −λe with λ > 0
guarantees the asymptotic stability of closed-loop system
because V̇ (t) will be always negative. Then, it can be noticed
that as for kinematic model of the robot, it is possible to find
a linear relation between current pose changing speed ṡ and
the robot speed ξ, i.e., we can find a matrix Ls that

ṡ = Lsξ (15)

It can be underlined that the matrix Ls, which relates the time
variation of s in camera frame to the end-effector velocity in
the world frame, represents the c1Mw matrix knowing that
Jacobian robot matrix is equal to identity for presented robot
structure. In our case, robot speed is defined by the linear
speed, as rotations are not taken into account:

ξ = (vx, vy, vz, 1)> (16)

Using Ls matrix, we can calculate the derivative of the error:

ė(t) =
d

dt
(s(t)− s∗) = ṡ(t) = Lsξ (17)

By imposing ė = −λe, we obtain:

ξ = λLs
−1e (18)

The estimation of the c1Mw matrix was presented in Sec-
tion III. So, in the final control law, joints speeds are
calculated as

q̇ = ξ = −λ(c1Mw)−1
(

c1to − c1t∗o
1

)
(19)

B. Results with Different Values of λ

The choice of gain λ depends mainly on the number of
frames per second that camera can provide. In the case of
higher gain, the difference between object position in two
consecutive images becomes too important, so, the tracking
algorithm will have some convergence problems. If it is too
small (λ� 0.01), the displacement speed will decrease and
the assembly will take much more time. Here, we provide
the results for two values of λ: λ = 0.1 and λ = 0.05. They
are represented in Fig. 6 and in Tab. V. The choice of λ
value is a compromise between convergence speed and final
precision. For further experiments, a value of 0.05 is used.
The error in this case does not exceed 1.7 µm.
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Fig. 6: Visual servoing errors for different values of λ.

Fig. 7: General concept of holder assembly based on the use
of robotic microgripper [5].

V. EXPERIMENTAL VALIDATION

The final goal of our work was to automate the mi-
croassembly process of micro-optical bench and, thus, vali-
date the effectiveness of presented approach of object posi-
tion estimation in a real application where high precision
is required. The assembly consists in insertion of holder
in the V-groove guiding rails of silicon baseplate using a
micromanipulation station (Fig. 7). The complexity of this
task is due to a special form of holder: first, it contains
very small flexible parts (span connectors) relative to the
object size. Secondly, the holder thickness is about 20 times
smaller than its height and weight. For holder positioning
in the field-of-view of both cameras, a programmed point-
to-point trajectory is used. This task doesn’t require high
precision, so, the proprioceptive robot sensors are used. On
the other hand, the insertion of the holder in the base plate
is the step which defines the quality of assembly and, at
the same time, is the most complicated in the teleoperated
mode, so the objective is to automate it using visual servoing.
First of all, one should succeed in realizing an assembly in
teleoperated mode (steps 1-5, Fig. 7) in order to define the
desired pose s∗ for further automated assemblies. Once it’s
done, a disassembly process is carried out, so an automated
cycle begins from Step 2 until Step 4. After doing several
consecutive automated assemblies, one can notice that the
mean absolute positioning error (Fig. 8, Table VI) before



TABLE VI: Mean absolute errors of assembly before and
after releasing the object.

Mean assembly error Before releasing After releasing
ex 3.07 µm 9.88 µm
ey 3.56 µm 8.91 µm
ez 4.63 µm 6.00 µm
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Fig. 8: Assembly errors due to the step of component release
measured by visual system in Rw.

holder releasing is inferior to 5 µm. The error becomes
bigger compared to visual servoing error, because during
assembly the object comes into contact with a silicon base
plate that results in uncontrollable rotations of the object
that cannot be compensated using our robot structure. The
mechanical structure of the holder was developed in a sort
that while releasing it can compensate angular position errors
thanks to the particular form of the object and the base plate:
when snap connector is released one can observe ”fastening”
between objects. However, after several experiments, we can
notice that angular errors are compensated only partially.
This effect of ”fastening” also results in change of object
position that explains the increasing errors (Fig. 8 and
Table VI).

VI. CONCLUSIONS

The precise estimation of 3D position of an object is a
key point of microassembly process. The problem of 3D
object position estimation in microscale have been solved
using stereo model-based visual tracking and applying a
linear algorithm of depth coordinate reconstruction. This
algorithm does not depend on object form and can be applied
in all cases where CAD model can be defined. It uses the
information from both cameras in order to estimate the depth
and gives an optimal solution in a least-squared sense. The
applied visual servoing control law gives a precision better
than 2 µm. Finally, the experimental results on automatic
microassembly prove the viability of presented approach: the
mean absolute error of micropositioning is inferior to 5 µm.
After component releasing the assembly error stays inferior
to 10 µm. Assembly automation also allows to increase
repeatability and decrease cycle time (from 10 minutes for
teleoperated mode to about 15 seconds). The presented

approach can be used for closed-loop control of MEMS, as
well as a measurement tool in different microsystems.
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